
 

2. Dosage-response modelling 

 

 

 

 

 

 

 

 

 

  



1 Theoretical content 
In order to better inform the clinical decision making of the foot health practitioner in the computer-

aided design stage, some research investigated how the design of FO impact some biomechanical 

variables and Patient Reported Outcomes [1–11]. Some research has compared the results of a control 

intervention group to a FO intervention group [1,2,4–7]. However the design of these studies may fail 

to identify the effect of the FO intervention since it is highly probable that the control intervention also 

triggers the conditioned and unconditioned stimuli of FO intervention and thus have an effect on the 

outcomes evaluated [1,12–14].As mentioned above, the placebo and nocebo effects (secondary 

clinical strategy) depend indeed on the intervention [12,15] and the forces applied on the foot is the 

result of its interaction with the device with which it interacts [16–18]. Based on this, it seems evident 

that the effect allocated to the FO intervention actually depends on the effect of the control 

intervention and that it is consequently hard to quantify the real effect of the FO intervention.  

To better quantify the effect of FO intervention, some studies have analysed how incrementally 

modifying certain geometric features of the design of a FO (dose of stimulus) impact a variable 

observed (response) [3,8–11]. Whereas analysing the dose-response relationship of an intervention  is 

originating from the pharmaceutical industry [19], it has been newly introduced in the domain of FO 

and has gain interest with the development of Computer-aided design (CAD) [1,3,8–11,20]. Advances 

in CAD facilitates the incremental change of the dosage of the stimulus thanks to their ability to 

generate a FO geometry with a set of parameters to which values are assigned [21–26]. These values 

are an integral part of the design whose incremental change modify the FO geometry and consequently 

the dose of the stimulus [3,8–11,21–26].  

In addition, how the FO geometry behave with incremental changes is defined by a mathematical 

foundation [21–26] which can be exchanged between different CAD Systems [21,25]. This ability to 

exchange the information which determine how the geometry behave when the dosage is changed 

seems to be a great opportunity to promote a more accurate replication of a FO geometric feature 

modification. To date, all the studies which investigated the dose-response relationship of FO 

intervention incrementally change the dosage of the geometric features while the incremental change 

of a feature related to the visual and physical properties  has never been investigated yet. Among other 

things this could be explained by the fact that current CAD systems are developed to allow the design 

of geometries but are not efficient to take the physical and visual properties into considerations [27–

29].  

Beside the use of CAD systems, computational simulation are used to evaluate synergistically the 

geometrical and material designs of a device while assessing its mechanical behaviour in a specific 

loading condition [30]. In other words, these simulations allow to analyse how the stress and strain of 

a specific tissue are affected by a specific loading condition [30–39]. The process consists of importing 

a FO model into a computational simulation system in which the material properties, the loading and 

boundary conditions will be applied [30–39]. By repeating this process various times before 

manufacturing the FO, the user is able to optimize the geometric feature and physical features of the 

FO (dose of stimulus) in regards to its mechanical effect (response) [30–39]. While the computational 

simulations are a great tool to better understand the mechanical effect of FO [30–39], its utilization is 

probably not suitable for clinical practice at the time being due to its time-consuming procedure and 

its complexity [31]. This is even more true when we know that to be more accurate, this process should 

ideally be based on patient-specific data such as an MRI and a 3D gait analysis [39]. It can therefore be 

speculated that this kind of simulations mainly provide basic science information while knowledge 

transfer has yet to be done.  



 

To date the literature which has investigated the dose-response relationship in the domain of 
FO focused on the analysis of biomechanical responses and mainly highlighted that the geometric 
feature of FO can incrementally alter the foot biomechanics until a desired degree [3,8–11]. Future 
research could eventually promote other practices in the field of FO by analysing if the geometric 
feature, physical properties or visual properties of FO can incrementally alter the tissue and cells, the 
patient perception and other responses related to the placebo effect[12,40–52]. These research could 
guide practitioner in the dosage of FO dosage-response model which should be considered in light of 
the primary and secondary clinical strategies[3,8,43,45–53,9–12,15,40–42]. Notably, practitioners 
should be aware that increasing the dosage of FO mechanical stimulus can affect the comfort perceived 
by the patient[11,53] which is itself related to the compliance to FO[54].  



2 Task 
 

After having consulted the PowerPoints related to the design, please answer the following questions:  

 

- Which feature or properties of the FO design are determined in those PowerPoints. Please 

adopt the terminology reported in the following publication [15]. 

 

- How could you incrementally increase the dose of the design illustrated in the PowerPoint 

“Example 2” and what would be the expected response(s)? 

 

- How could you incrementally increase the dose of the design illustrated in the PowerPoint 

“Example 3” and what would be the expected response(s)? 
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